Tree and stand variables

biomass

Outline

- imes Definition of biomass
- × Total biomass and biomass per tree component
- × Direct evaluation of biomass?
- × Indirect evaluation of biomass
 - Stem biomass (wood and bark)
 - Crown biomass (branches and leaves)
 - Root biomass
- imes Biomass estimation with allometric equations
- **×** The special case of cork biomass

Total biomass and biomass per tree component

× Biomass is defined as "dry weight" (after drying in a stove till constant weight is achieved)

× It is important to take into account the biomass of the different tree components:

- ✓ Stem, separated into wood and bark
- Crown, separated into branches, leaves, flowers and fruits
- Roots, separated in main root, thick roots and fine roots
- × Tree total biomass is the sum of all the tree components
 - ✓ For some purposes some components are not taken into account (e.g. flowers and fruits for the Kyoto protocol)
- × Tree total aboveground biomass does not include the roots

Why is biomass estimation it so important?

- × Biomass estimation is the basis for the evaluation of carbon stocks, carbon sequestration and nutrients balance
- × Forest products (wood and non-wood) are many times marketed on a weight basis:
 - ✓ Wood for energy (or even for other purposes)
 - Cork, one of the most important forest products in Mediterranean regios, is marketed on a weight basis

Biomass – direct evaluation?

- × The evaluation of tree biomass implies the harvest of the tree, including the up-rooting, and the separation of all the tree components
- Ecen though, in the field just the fresh weight can be obtained therefore direct evaluation is not possible...
- **×** Tree biomass estimation depends on the tree component:
 - Determination of water content in a sample (by drying the sample in a stove)
 - ✓ Wood and bark biomass may be obtained from volume estimation and wood or bark density
 - ✓ Among other possible methods ...

Example of data for tree biomass determination

× These data refere to an eucalyptus tree harvested in a plot with spacing 4X4 m

ABATE DE ÁRVORES DO B	ILOCO II JANEIRO 2006
equipa Paulo, Vera, Pedro, Rui	data_1/2/06
compasso <u>4 x4</u> nº árv. <u>Q1</u>	
árvore em pé:	Bardona Maria
dap cc (cm) $\underline{12,2}$ h total (m) $\underline{13,0}$ hbcopa (r	m) <u>15,5 (cc.(m)</u> <u>2,5</u> General 18-15.5
árvore abatida:	offens colore of any
h total (m) <u>19,4</u> hbcopa (m) <u>16,3</u> O h1 ^e ramo comprimento copa = h total – hbcopa = <u>3,10</u> (c hbc (m) <u>16,3</u> O hbc+1/3 (m) <u>14,33</u> hb dbccc (cm) <u>39/39</u> dbc+1/3cc (cm) <u>31/30</u> db (1) (2)	$\begin{array}{c} \text{verde (m)} & \underline{1630} \text{ hdcos (m)} & \underline{12,60} \\ \hline 103 (m) & \underline{1,03} \\ \text{xc+2/3 (m)} & \underline{18,36} \\ \text{bc+2/3cc (cm)} & \underline{8/8} \\ (1) & (2) \end{array} $
estrato superior bC + 2/3 CC -	
estrato medio	
00+1/3CC -	
estrato interior	
dbe _	

Example of data for tree biomass determination

			E.		
	toro 1 toro 2	loro S			toro h
Coror					
nº toro	comprimento toro (m)	d1 c/ casca (cm)	d2 c/ casca (cm)	d1 s/ casca (cm)	d2 s/ casc (cm)
0 (cepo)	0,16		195	10 0	
1 (corte a 1.30m)	1,14	14,2	15,5	12,5	14,0
2	3.0	11,9	12,0	70'J	11,0
3	0.0	10,1	10,0	9,5	9,6
4	3,0	8.4	8,9	8,0	8,4
5	3,0	2.2	2.4	6.8	2.0
5	3,0	110	- q	670	E C
6	3,0	6,0	5, 1	515	0,6
becada	3,10	<i>u</i> , <i>i</i>	4,1	3,+	5, +
_8					
9					

ENSAIO DE COMPASSO DE VILAR DE LUZ ABATE DE ÁRVORES DO BLOCO II - JANEIRO 2006 equipa <u>Paulo</u>, <u>Vera</u>, <u>Redro</u>, <u>Rue</u>data <u>1266</u> compasso <u>4x6</u> nº árv. <u>21</u>

COPA - total

	estrato superior	estrato médio	estrato inferior
folhas verdes (kg)	1,585-1,323	2,580-0,8470	0,660 - 0,069
ramos verdes (kg)	0,120 - 0,013	2,691-1,049	2,072-1,32

	copa na totalidade
folhas secas (kg)	
ramos secos (kg)	~
cápsulas (kg)	0,040-0,013

COPA - amostras

	estrato superior	estrato médio	estrato inferior
folhas verdes - área foliar (kg)	_	_	_
folhas verdes (kg)	0,137-0,013	0,189-0,013	0,169-0,013
ramos verdes (kg)	0,120-0,013	0,286-0,013	0,137-0,01

	copa na totalidade
folhas secas (kg)	
ramos secos (kg)	-
cápsulas (kg)	0,040-0,013

TRONCO

Recolher da base (inferior) de cada toro 1 rodela de \pm 3 cm. Considerar separadamente madeira e casca. Os sacos com as amostras de madeira têm que ser devidamente identificados – compasso, nº árvore, nº toro – mas NÃO precisam de ser pesados (ver CASCA).

CASCA

peso da totalidade da casca por toro (kg):

toro 1 <u>2 136</u> toro 2 <u>3, 618</u> toro 3 <u>1,92</u> toro 4 <u>1,394</u> toro 5 <u>1,157</u> toro 6 <u>0, 82</u> 4 6:00 toro 7 <u>0,258</u> toro 8 _____ toro 9 ____ toro 10 ____ toro 11 ____ toro 12 ____ peso de cada uma das cascas das rodelas (kg):

toro 1 0,120 toro 2 0,055 toro 3 0,025 toro 4 0,018 toro 5 0,017 toro 6 0,01 2 toro 7 0,004 toro 8 toro 9 toro 10 toro 11 toro 12

> 3 total = Soma das 2 Falta Sortau!

Ensaio de Vilar de Luz - Bloco 2

compasso. 4 × 4 Janeiro 2006

Data de	colocação	na	estufa:	3	121	\$6	Ì.,
				and the second sector			

	peso fresco		data (pe	eso seco)	peso seco
	(g)				final (g)
felhas secas.					
ramos secos-					
cápsulas	26,2	15,53	15,49		10,44

data de colocação na estufa: 3/2/\$6

	peso fresco	data (peso seco), Con Carea				peso seco
	(g)	8/2/06	912106	10/2106		final (g)
folhas	156,4	90,88	90,73	90,74 -	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	78,07
ramos	123,6	73,78	73,75		b	65,07

Estrato médio da copa

Estrato inferior da copa

data de colocação na estufa: 3/2/66

	peso fresco		data (peso seco), COM CONXO				
	(g)	812106	912/06	10/2/06		final (g)	
folhas	176,6	99,88	99,88	99.88	b	86,96	
ramos	272,9	15 3,85	153,57		9	143,5	

Estrato superior da copa

data de colocação na estufa: 3/2/06

	peso fresco	peso fresco data (peso seco) o Con cai xa					peso seco
	(g)	812106	9/2/06	10/2/06		final (g)	
folhas	123,7	72,55	72,48	72,42	Þ	59,70	
ramos	106,8	59,33	59,25		D	50,86	

Área foliar

	Estrato inferior		Estrate	o médio	Estrato Superior	
	peso fresco (g)	área foliar (cm²)	peso fresco (g)	área foliar (cm²)	peso fresco (g)	área foliar (cm²)
limbos	<hr/>	~	1	~	\sim	~
pecíolos						/

Estimating biomass with allometric equations

➤ The difficulty envolved in the direct evaluation of tree biomass implies the use of equations to estimate tree biomass from dbh and height/height of the live crown

× Let's see na example

Tree component	Parameter estimations					
	kw = 0.0101					
Wood ww = kw d ^{aw} h ^{bw}	se hdom ≤ 10.710 hdom	hdom				
	aw = { se hdom > 10.710 1.7788	1011				
	bw = 1.3638 kb = 0.0006					
Bark	se hdom $\leq 18.269 \frac{\text{hdom}}{-0.6970 + 0.4586 \text{ hdom}}$	lon				
wb = kb d ^{ab} h ^{bb}	ab = { se hdom > 18.269 2.3784					

Equations to estimate total biomass and biomass per tree component for eucalyptus in Portugal (António et al., 2007)

b	b :	= 1	1.	0	6	11	ĺ

		bdom		
	11 7007	naom		
	se hdom ≤ 7.387	-1.0312+0.7069 hdom		
al =	se hdom > 7.387	1.7627 - 0.01065	hdom	
bl = 0	.6430			
kbr =	0.0237			
	(hdom		
	se hdom ≤ 8.8348	-0.9130+0.7043	hdom	
abr =				
	se hdom > 8.8348	1.6640		
	al = bl = 0 kbr = abr =	al = $\begin{cases} se \ hdom > 7.387 \\ bl = 0.6430 \\ kbr = 0.0237 \\ abr = \begin{cases} se \ hdom \le 8.8348 \\ se \ hdom > 8.8348 \end{cases}$	al = $\begin{cases} se \ hdom > 7.387 & 1.7627 - 0.01065 \\ bl = 0.6430 \\ kbr = 0.0237 \\ abr = \begin{cases} se \ hdom \le 8.8348 & \frac{hdom}{-0.9130 + 0.7043} \\ se \ hdom > 8.8348 & 1.6640 \end{cases}$	

Total aboveground biomass w = ww + wb + wl + wbr

- ➤ Equations to predict tree cork weight started to appear in the 50's and from then several new equations have been developed (Natividade, 1950; Ferreira et al., 1986; Montero, 1988; Ferreira e Oliveira, 1991; Costa, 1992; Sousa, 1997)
- × All the equations published till the year 2000 refered to fresh weight and not to air dried or dry weight
- × The available models can be very simple, using just d or c as regressor variable or more complex requiring a much larger number of variables
- × All the models predict cork weight for 9 years old cork, except the model developed by Vázquez and Pereira (2005) that includes a dummy variable for 10 years old cork

Models for use immediately before the stripping process With no bough information $\ln w = 2.3665 + 2.2722 \ln(\text{pbh}_{\infty}) + 0.4473 \ln(\text{shs})$ With the number of stripped boughs $\ln w = 2.1578 + 1.5817 \ln(\text{pbh}_{\infty}) + 0.5062 \ln(\text{nb})$ $+0.6680 \ln(\text{shs})$ With the measurement of the tallest stripped bough $\ln w = 2.0135 + 0.7549 \ln(\text{sh}_{max} \text{pbh}_{\infty}^2) + 0.0836 \text{ nb}$ With the measurement of all stripped boughs $\ln w = 1.8875 + 0.6575 \ln(\text{sh}_{tot} \text{pbh}_{\infty}^2) + 0.1499 \text{ shs}$

Models for use after the stripping process or at an intermediate age of the cork cycle production With no bough information $\ln w = 3.0071 + 2.0039 \ln(\text{pbh}_{ic})$ $\ln w = 2.7506 + 1.9174 \ln(\text{pbh}_{ic}) + 0.4682 \ln(\text{shs})$ With the number of stripped boughs $\ln w = 2.2137 + 0.9588 \ln(sss) + 0.6546 \ln(nb)$ With the measurement of the tallest stripped bough $\ln w = 2.3305 + 0.6602 \ln(\text{sh}_{\text{max}} \text{pbh}_{\text{ic}}^2) + 0.0937 \text{ nb}$ With the measurement of all stripped boughs $\ln w = 1.8276 + 0.8338 \ln(ss_{tot}) + 0.3143 \ln(pbh_{in})$ +0.45621n(ct) $\ln w = 1.8489 + 0.5975 \ln(\text{sh}_{tot} \text{ pbh}_{ic}^2) + 0.4423 \ln(\text{ct})$ $+0.2536\ln(shs)$

➤ Paulo and Tomé (2010) proposed a method for the prediction or cork dry weight with t years of age from a cork measurement undertaken at any cork age

× The method is based on the follwoing:

- Estimation of the proportion of cork back weight
- ✓ Homogeneity of cork density if cork back is excluded
- ✓ Use of a cork growth model to predict cork thickness at t years of age

Structure of a 9 years old cork: A – wood; B – phelogen; C – cork belly; D1 e D2 – cork annual rings; E – cork back (adapted from Natividade, 1950)

Cork thickness after boiling (mm)

Relationship between cork back weight and cork thickness after boiling

imes The application of the method consists in:

- 1. Estimate 9 years cork weight (wcm₉)
- 2. Estimarte the % of cork back weight in a 9 years old cork (cb%)
- 3. Estimate 9 years cork weight without the cork back (wcm_{9 b}):

$$wc_{9_b} = wc_9 \left(1 - \frac{cb\%_9}{100}\right) = wc_9 - \underbrace{wc_9 \frac{cb\%_9}{100}}_{\text{biomass of cork back}}$$

4. Estimate the t years cork weight:

٧

$$wc_{t} = \underbrace{wc_{9_b}}_{biomass of cork tissue} \underbrace{\frac{cc_{tc}}{cc_{9}}}_{biomass of cork back} + \underbrace{wc_{9}}_{biomass of cork back}$$

cc_{tc} is cork thickness after boiling of a tc years cork and cc₉ is the respective thickness with 9 years of age

X Model to estimate the % of cork back weight (Paulo and Tomé, 2010):

 \checkmark cb% = exp(-(cc_{tc}/19.4629)^{0.4744})

cb% – percentage of cork back weight; cc_t – cork thickness after boiling for a tc years cork (mm)

X Models to estimate 9 years cork weight (Paulo and Tomé, 2010):

- 1. wc=0.0203 du ^{1.9843}
- 2. wc=0.0372 nbrd₁^{0.2811}du ^{1.7825}
- 3. wc=0.1036 du ^{1.3395} hdv ^{0.6709+0.1466 ln(nbrd1)}
- 4. wc=0.0303 $[\ln(cc_9)]^{1.0667}$ du ^{1.3178} hdv ^{0.6703+0.1570 ln(nbrd1)}

wc – cork dry weight (kg); du – underbark diameter (cm); nbrd₁ – number of debarked 1st order branches; hdv – vertical debarking height (m); $cc_9 - cork$ thickness after boiling at 9 years of age (mm)

Estimate the thickness of cork with 9 years using a cork growth model (Almeida and Tomé, 2010):

1. Estimate the thickness of the complete cork rings (ct_{tc}; cc_{tc} is the caliber of boiled cork):

$$ct_{tc} = \frac{cc_{tc} - 4.572}{1.058}$$

2. Estimate the cgi (cork growth index or thickness of the first compelte 8 rings)

$$cgi = ct_9 = ct_{tc} \frac{1+19.50(tc-1)^{-1.088}}{1+19.50(9-1)^{-1.088}} = \frac{cc_{tc} - 4.472}{1.058} \frac{1+19.50(tc-1)^{-1.088}}{1+19.50(9-1)^{-1.088}}$$

ct_{tc} is the thickness of complete rings in a cork with tc years; cc_{tc} is the respective caliber

3. Estimate the caliber of a cork with 9 years:

 $cc_9 = 4.572 + 1.058 ct_9$

× Estimate the tickness of a cork with tc years using the cork growth model (Almeida and Tomé, 2010):

1. Estimate
$$ct_{tc}$$
:
 $ct_{tc} = ct_9 \frac{1+19.50(9-1)^{-1.088}}{1+19.50(tc-1)^{-1.088}}$

2. Estimate cc_{tc}:

 $cc_{tc} = 4.572 + 1.058$ ct_{tc}

Schematicrepresentation of a sample of a 9 years old cork, showing the 8 complete rings and the 2 half rings (adapted from Natividade, 1940)

× As an example, let's calculate the weight of a 11 years old cork from a tree with du=80 cm in which the cork caliber at 7 years was measured as 20 mm

- Weight of the 9 years old cork (tree growth not considered) wc₉=0.0203(80) ^{1.9843}=121.2823 kg
- 2. Caliber of the 9 years old cork (cc_9)

ct₇=(cc₇-4.572)/1.058=14.58 mm cgi=ct₉=ct₇(1+19.5(7-1)^{-1.088})/(1+19.5(9-1)^{-1.088})=18.17 mm cc₉=4.572+1.058 ct₉=4.572+1.058(18.17)=23.80 mm

3. % of cork back weight in a 9 years old cork (cb%9) $cb\%9=exp(-(cc_9/19.4629)^{0.4744})=0.33$

4. Weight of a 9 years old cork without the back weight

 $wc_{9 b} = wc_{9}(1-0.33) = 121.2823 - 121.2823(0.33) =$

=121.2823-40.0232=81.2592 kg

- 5. Caliber of the 11 years old cork (cc₁₁) $ct_{11}=ct_7(1+19.5(7-1)^{-1.088})/(1+19.5(11-1)^{-1.088})=21.24 \text{ mm}$ $cc_{11}=4.572+1.058 \text{ ct}_{11}=4.572+1.058(21.24)=27.04 \text{ mm}$
- 6. Weight of the 11 years old cork (wc₁₁) wc₁₁=wc_{9_b}(cc₁₁/cc₉)+wc₉(0.33)= =81.2592(27.04/23.80)+40.0232=132.3445 kg